
Introduction to Computer Vision (Spring 2023)

Assignment 1

Release date: March 17, due date: April 1, 2023 11:59 PM

1 Overview

The assignment includes 5 tasks: implementing convolution operation, Canny edge detector, Harris corner
detector, plane fitting using RANSAC, and backpropagation for a toy classification network, which sums
up to 100 points and will be counted as 10 points towards your final score of this course. This assignment
is fully covered by the course material from Lecture 2 and 3.

The objective of this assignment is to get you familiar with coding and implementing the basic modules
and algorithms of classic computer vision and deep learning in a tensor style. Here the tensor style
refers to avoiding using any for loops and, instead, implement everything via matrix or tensor operations,
e.g. matrix multiplication. This exactly resembles how people code in PyTorch or Tensorflow for the sake
of parallel computing. We offer starting code for all the tasks and you are expected to implement the key
functions using Python and Numpy.

2 Notices

1. If you find some powerful functions in Numpy that can easily solve a task, please ask us if this is
allowed before use.

2. If a task doesn’t indicate ”for loops” are allowed, using ”for loop/while” in your code will be penalized
(1 point for 1 use). Note that np.vectorized is also not allowed since it is not parallel computing
and the speed is the same as ”for loop”. Some useful Numpy functions are included in Appendix 5
for your information.

3. To submit your homework, please compress your code and your results to Name ID.zip following
the original path structure, and submit to course.pku.edu.cn.

4. Feel free to post in the discussion panel for any questions and we encourage everyone to report the
potential improvements of this assignment with a bonus of up to 5 points.

3 Tasks

1. Convolution operation (15 points):

Convolution is one of the most common operations used in both deep learning and image processing.
In this section, you are required to implement 2D convolution in two different ways. You will be able

1

course.pku.edu.cn


to examine your convolution operator in the Gaussian filter and Sobel filter. Please complete the
HM1 convolve.py.

a)[5 points] Implementing Padding Function

You are required to implement a padding function that takes inputs a 2D image, a padding size (the
number of circles around the image), and a padding mode (zero padding or replication padding). Here
replication padding refers to padding the input tensor using the replication of the input boundary
(see Appendix 2). Note that you are not allowed to leverage the numpy.pad function.

b)[5 points] Implementing 2D Convolution via Toeplitz Matrix

The convolution can be implemented as a single matrix multiplication, which is called Toeplitz matrix
(see Appendix 1). For a 6 × 6 input 2D array and a 3× 3 filter, you are requested to construct the
doubly block Toeplitz matrix and then perform the convolution on the 2D array using your Toeplitz
matrix. Here we assume that the convolution uses zero padding so that the output size remains the
same.

Hint: you will need to construct a 36 × 36 Toeplitz matrix if your input array is not padded or a
36× 64 Toeplitz matrix if you pad the input first. You can avoid using for loops since Numpy allows
you to index many matrix elements at the same time and assign values to them together.

c)[5 points] Convolution by Sliding Window

Convolution implemented by Toeplitz matrix is fully parallel, but it requires you to construct a
highly sparse Toeplitz matrix (nearly N2 × N2) for an image with N × N size. An alternative for
implementing convolution is through sliding window, which allows you to simply compute the dot
product between your image values and the kernel inside each window. In this question, you are
requested to implement a convolution operator that can take a 2D image with an arbitrary shape as
input and perform convolution with k × k kernel. You can assume no padding when implementing
this convolution operator.

Hint: you will need to construct a (N − k + 1)2 × k2 matrix from the input image to support parallel
computing. To avoid using any loop operations, you can use np.meshgrid to generate indices.

d)[0 points] Gaussian Filter

With the sliding-window convolution, we can simply construct a 3 × 3 Gaussian filter. In the code,
we will use your implemented padding function in replication mode in a) and your implemented
sliding-window convolution in c) to construct a 3× 3 Gaussian filter.

e)[0 points] Sobel Filter

In Lecture 2, we talked about using the finite difference to approximate image gradients. A more
commonly used way is actually to perform Sobel filter (see Appendix 3). In the code, we will use
your implemented padding function with reflection mode in a) and the sliding-window convolution
function in c) to construct a Sobel filter.

2. Canny Edge Detector (25 points):

In this task, you will build your own Canny edge detector. Specifically, there are three key functions
to be implemented, image gradient computing, non-maximal suppression and edge linking (with
hysteresis threshold). Please complete the HM1 Canny.py, and you will see a similar result as Fig.
1.

2



Figure 1: Canny edge detector with Lenna

a)[5 points] Compute the Image Gradient.

We will use Sobel filter to approximate the image gradient – x-derivative ∂I
∂x and y-derivative ∂I

∂y .
Then, we can obtain the magnitude M and the orientation D of the gradient as:

M =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

,

D = arctan

(
∂I

∂y
· ∂x
∂I

)
.

(1)

The magnitude and direction give a rough estimation of the edges, including the possibility of a
pixel lying in the edge (magnitude) and the normal of the edge (direction). You will complete the
compute gradient magnitude direction function.

b)[10 points] Non-Maximal Suppression (NMS)

After obtaining the magnitude and direction of the gradients, you should check each pixel and remove
unwanted pixels which may not constitute the edge. A common technique to achieve this goal is NMS.
NMS finds the local maximum along the gradient direction, which could lead to ”thin edges”. Please
complete the non maximal suppressor function as introduced in slides. To reduce the difficulty, you
can implement the simplified version as in Lec. 3 Page 15.

c)[10 points] Edge Linking with Hysteresis Threshold

The edges resulted from NMS are often too thin and may not be connected. To link the potential
discontinuous edges, we should do edge linking. Please complete the hysteresis thresholding function
(”for loop” is allowed in this question). To reduce the difficulty, you don’t have to use the
direction of the gradients and can simply connect adjacent pixels if the magnitude is larger than the
lower threshold.

3. Harris Corner Detector (20 points):

One of the key topics in computer vision is to find the salient and accurate point features of given
images. One early attempt to find these features is called Harris corner detector. In this question, you
are requested to implement the corner response function to investigate the property of the intensity

3



Figure 2: Harris corner detector with handwriting.png

changes of a given window. Please complete the HM1 HarrisCorner.py, and you will see a similar
result as Fig. 2.

Hint: you only need to implement the rectangle window version introduced in the slides.

4. Plane Fitting using RANSAC (20 points):

In this task, you are expected to implement a plane-fitting algorithm with RANSAC to find a plane
from a noisy 3D point cloud. Specifically, you need to perform the following steps.

1) hypothesis generation: For one hypothesis, you need to randomly select a group of seed points and
then estimate the plane parameters. The number of hypotheses should be decided such that with
more than 99.9% probability at least one hypothesis does not contain any outliers. You are expected
to generate all hypotheses in parallel.

2) verification: find and count the inliers for all the hypotheses.

3) final refinement: select the hypothesis with the largest number of inliers as your best hypoth-
esis and estimate the final plane parameters with its inliers using the least-square method, which
minimizes the sum of squared perpendicular distances between the points and the plane.

Please complete the HM1 RANSAC.py, and you will see a similar result as Fig. 3.

Figure 3: Plane (blue) fitting by RANSAC; Points (green).

5. Backpropagation for an MLP (20 points):

Backpropagation is a fundamental technique for training neural networks. In this question, you
will experience how to write the backpropagation for a toy MLP to achieve binary classification.

4



Specifically, you will have 10 images from the MNIST dataset and the MLP learns to predict whether
the given image is ”0” or not.

Figure 4: Example results of our BP implementation.

We have already implemented the forward pass including the sigmoid activate function and the cross-
entropy loss. Once you have figured out the workflow of the forwarding, try to implement your own
backpropagation. Note that, you are only recommended to use Numpy and without using any loop
operations. You can check more details in the slides of lecture 3 and Appendix 4.

5



Appendix

1. 1D Convolution with Toeplitz Matrix.
https://en.wikipedia.org/wiki/Toeplitz matrix#Discrete convolution

2. Replication padding in PyTorch.
https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html

3. OpenCV tutorial on Sobel derivative.
https://docs.opencv.org/3.4/d2/d2c/tutorial sobel derivatives.html

4. Backpropagation for a Linear Layer from Justin Johnson. http://cs231n.stanford.edu/handouts/linear-
backprop.pdf

5. We recommend some handy Numpy functions which may help your tensor-style coding.

• meshgrid, https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html

• concatenate, https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html

• where, https://numpy.org/doc/stable/reference/generated/numpy.where.html

• argmax, https://numpy.org/doc/stable/reference/generated/numpy.argmax.html

• linalg.svd, https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

• arctan2, https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html

6

https://en.wikipedia.org/wiki/Toeplitz_matrix#Discrete_convolution
https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html
https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html
http://cs231n.stanford.edu/handouts/linear-backprop.pdf
http://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html
https://numpy.org/doc/stable/reference/generated/numpy.where.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html

	Overview
	Notices
	Tasks

