
Introduction to Computer Vision (Spring 2022)

Assignment 3

Release date: May 2, due date: May 22, 2022 11:59 PM

This assignment includes 5 tasks: transforming a depth image to a point cloud, sampling a point cloud
from a mesh, implementing Marching Cube, implementing and training a PointNet for classification and
segmentation, and training a Mask R-CNN, which sums up to 150 points and will be counted as 15 points
towards your final score of this course. This assignment is fully covered by the course material from Lecture
7-10.

The objective of this assignment is to get you familiar with processing 3D data and coding the basic
deep learning-based algorithms of 3D vision and object detection. We offer starting code for all the tasks
and you are expected to implement the key functions using Python, Numpy, and PyTorch (for neural
networks).

Policy on using for loop/while: for some questions that don’t allow for loop/while , using them
will be penalized (2 point for 1 use). Some useful Numpy functions are included in Appendix for your
information.

Submission: please compress your code along with your results toName ID.zip following the original
path structure, then submit to course.pku.edu.cn. Feel free to post in the discussion panel for any questions
and we encourage everyone to report the potential improvements of this assignment with a bonus of up to
5 points.

1. Backprojection: Transform a Depth Image to a Point Cloud (15 points):

In this question, you are required to transform a depth image to a point cloud. The depth image is
synthesised by a standard perspective camera.

Figure 1: Left: raw depth image. Middle: transformed partial point cloud with another viewpoint. Right:
ground truth complete point cloud.

1

course.pku.edu.cn


After backprojection, compute the one-way Chamfer distance from your generated partial point cloud
to the ground truth complete point cloud. You are required to only use Numpy to finish this task.
Note that for-loop is not allowed.

2. Sample a Point Cloud from a Mesh (35 points):
Please refer to the newest slides (Lecture 9 P8-P20) from course.pku.edu.

a)[15 points] Uniform Sampling

An easy and fast way to sample a point cloud from a mesh is uniform sampling. First, you need
to compute the area of each individual face and use it to compute the probability of each face
to be sampled. Then, independent identically distributed (i.i.d.) sample faces according to the
probabilities. Finally, for each sampled face, uniformly sample one point inside the triangle.

In this question, you are required to implement this algorithm and you should expect a result as
Figure 2. Note that for-loop is not allowed.

b)[15 points] Farthest Point Sampling

Though uniform sampling is easy and fast, this method often results in irregularly spaced sampling
as shown in Figure 2. Farthest point sampling (FPS) is another sampling strategy, which can ensure
that the sampled points are far away from the others.

Under the greedy approximation, this algorithm will first uniformly sample a large number of points
U , and randomly choose one point p0 as the initialization of a point set S. Then, for each iteration,
pick up the point pi ∈ U , which is the farthest to the current point set S, and add pi to S. This
pick-and-add process is repeated until the point set S have enough points as we want. The result is
shown in Figure 2.

Note that for-loop is allowed here, since the sampled point of each iteration relies on the results of
previous iterations.

c)[5 points] Metrics

Finally you are required to compute the Chamfer distance (CD) and earth move distance (EMD) of
those two point clouds sampled by different methods. To give you a feeling about which metric is
more sensitive to sampling, you are required to repeat sampling and computing metrics for 5 times,
and save the mean and variance of CD and EMD for submission. For EMD, you can directly use this
repository.

Figure 2: Left: result of uniform sampling. Right: result of farthest point sampling.

2

https://github.com/j2kun/earthmover/
https://github.com/j2kun/earthmover/


3. Marching Cube (25 points):

Marching Cube is one of the most classic and famous algorithm to transform a signed distance field
(SDF) to a mesh. In this question, you are expected to implement this algorithm. To make it easier
to start, we provide the lookup table and some useful function, as well as a detailed demonstration
of how to use them. Please see the hints in lookup table.py for more details.

You are required to only use Numpy to finish this task. To help you debug and get a feeling of this
algorithm, we also provide two SDFs for you. The meshes generated from Marching Cube algorithm
should look like Figure 3. Note that for-loop is allowed here to reduce the difficulty.

Figure 3: Generated meshes from Marching Cube algorithm. Left: Spot. Right: Bob.

4. PointNet (35 points):

PointNet is the most widely adopted neural network for point cloud learning. In this question, you
are requested to implement the pipeline of PointNet for both classification and segmentation tasks
on ShapeNetPart1 and then visualize the features. Please read and follow the README to prepare
the environment and dataset.

a)[20 points] Points Classification and Segmentation.

First of all, you need to build the PointNet by following the architecture in Fig.4. In implementation,
you will build separate networks for different tasks with different feature dimensions. We provide
the off-the-shelf data-loaders of ShapeNetPart for both classification and segmentation tasks. The
training process may take you about 20 minutes. The content of this question can be found in
model.py.

a.1) For segmentation task, your network should predict the part labels of the given point cloud.
Specifically, we consider the ”airplane” category. Please refer to train segmentation.py for more
details.

a.2) For classification task, your network should predict the category of given point clouds. Besides,
we want you to investigate the effect of the dimensions of the global feature. So in this classification
part, you are requested to train two separate PointNets. One is the original PointNet with 1024D
global feature. And another one uses 256D global feature. You will have a similar training curve as
Fig.5. Please check train classification.py for more details and submit the screenshot.

1Yi L et al. A scalable active framework for region annotation in 3d shape collections[J]. ACM Transactions on Graphics
(ToG), 2016

3



Figure 4: PoinNet architecture for both classification and segmentation tasks.

Figure 5: Classification task with 1024D (pink) and 256D (blue) global feature. Segmentation task with
1024D global feature (gray)

b) [15 points] Point Feature Visualization

We have already trained some networks and draw lots of curves. But sometimes, we want a more
comprehensive way to understand what the network actually learned. So in this question, you are
required to visualize the cruciality of n× 1024 points feature before max-pooling in the classification
network(1024D). And the cruciality is simply defined as the maximum value along the point feature
dimensions. The colormap and points-to-ply functions are provided and you can obtain similar
colored point clouds as Fig.6. please see classficiation1024D feat vis.py for more details.

5. Mask RCNN (40 points):

Mask RCNN is the milestone of the 2D instance segmentation. Even now, it’s still considered as one
of the most important baselines in the field. In this question, you will have the chance to play with a
small Mask RCNN by predicting the instance segmentation of simple shapes, e.g. triangular, sphere
and rectangle. We build the Mask RCNN with torchvision2 and have replaced the backbone with

2https://pytorch.org/tutorials/intermediate/torchvision tutorial.html

4



Figure 6: Feature visualization with colormap. Your results may not be exactly the same.

lightweight mobilenetV2. Some settings have been modified to make it easy to run on pure CPUs
machines. The loop is allowed in this question and you can create new functions for your convenience.
The content of this question can be found in MaskRCNN.

a)[20 points] Prepare the dataset

Data preparation is always the first if you want to get a network work on your own data. In this
question, you are requested to generate a dataset that contains rectangles, spheres and triangles. Our
requirements are:

1. The number, position and size of the shapes should be random. And the color for both shapes
and backgrounds should be random.

2. We do not want large occlusions between shapes. So you need to implement a non-max
suppression (NMS) to remove the shapes with large overlap.

3. The detailed parameters are listed in dataset.py. We also encourage any creative ideas to
make the data preparation more interesting.

Several examples can be found in Fig.7. Please complete the MaskRCNN/dataest.py.

b)[10 points] Train the Mask RCNN

Now, with all data prepared, we are ready to train a Mask RCNN. You can obtain and load the
pre-trained weight to boost your training process by following the README. And the log will be
automatically saved in results/maskrcnn/train.log. Please check the MaskRCNN/train.py (this could
cost you 1 ∼ 2 hours for a good laptop with CPUs).

c)[10 points] Evaluate the Mask RCNN

Finally, we’d like to evaluate the performance of Mask RCNN. So You are required to implement
a function which is able to compute the mAP0.5 for both the detection and segmentation tasks.
However, the implementation of data preparation may vary by student. We, therefore, provide a
separate dataset called SingleShapeDatast which provides only one shape in each image. You will
evaluate your Mask RCNN with this specific dataset. Please complete the MaskRCNN/test.py.

5



Figure 7: Input data for Mask RCNN

Similar results could be found in Fig.8. Note that, due to the limited training steps, the performance
would not be perfect. The points would be counted as long as the results are reasonable :)

Figure 8: Results of the Mask RCNN

6



Appendix

1. We recommend some handy Numpy functions which may help your tensor-style coding.

• meshgrid, https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html

• concatenate, https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html

• where, https://numpy.org/doc/stable/reference/generated/numpy.where.html

• argmax, https://numpy.org/doc/stable/reference/generated/numpy.argmax.html

• linalg.svd, https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

2. We recommend some useful software for visualize point clouds and meshes.

• CloudCompare, https://www.danielgm.net/cc/

• MeshLab, https://www.meshlab.net/

7

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html
https://numpy.org/doc/stable/reference/generated/numpy.where.html
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://www.danielgm.net/cc/
https://www.meshlab.net/

